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AID CONPROL CHARACTWISTICS OF A MODEL W I " E  A 

By Edward C. Polhms  

Tests were made i n  the Langleg 300 Mw 7- by 10-foot tunnel of - a  
complete mde1 with a sweptback vee tail and a m p t b a c k  wing t o  
determine i ts  lov-epeed. s t a b i l i t y  and control  characterist ics.  

Comparisons were made with the resu l t s  of tests of the same tail 
panel with zero dihedral (horizontal tail) on the same wing-fuselage 
combination. 

For a sweptback vbe tail it appears that the  variation of 
s tab i l izer  and elevator  effectivenose with tail dihedral can be pre- 
dictkd  satisfactorily Prom isolated  vee-tail theory. The vee-tail 
contribution to longitudinal s tab i l i ty ,  however, is greater  than that 
predicted by isolated we-tail theory becauee of the favorable  effect 
of  sidewash a t  the tail. Although it has  been found in a previous 
investigation that t h i s  eidewash ef fec t  can be estimsted  for a straight 
wing, fo r  a highly m p t  wing this ef fec t  appear8 t o  be much greatem 
and at  present cannot be estinratad  because of the limited bowledge 
concerning the flow f i e l d  behind evept winge. 

For the s8m9 contribution to s t a b i l i t y  a vee-tail  configuration 
similar  to  the one tested will probably require less area than a 
conventional tail assembly (horizontal and ver t ica l  tail). 

IPIBODUCTION 

Interest  has been displayed  in vee tai ls  because of the possibil i tg 
of (1) reducing the eve-1 drag bf the empennage, because of a 
possible  reduction in  the m e a  required, and (2)  locating the tail out 
of the wing wake vlthout  encountering  difficult  structural problems. 



2 NACA RM No. Ln13 

The data of reference 1 indicate that  a n  unswept vee ta i l  behind an 
unswept  wing w i l l  require,  for  the sama s tab i l i ty ,  less area than the 
combined horizontal and ver t ica l  areas of a conventional tail. I n  
view of the in te re s t   i n  swept w i n g s  and tails for  hlgbepeed  f l ight 
and inasmuch as  there is l i t t l e  data  available on the aerodynamic 
behavior of swept vee tails, an investigation was  made of a complete 
model equipped wlth a 40° sweptback wing and a 40° eweptback vee tail. 
The results were compared with the results  obtained  with the sams tail 
panel a t  zero ta i l  dihedral  (horizontal t a i l )  on the sam wine-fieelage 
combination (reference 2) . 

SYMBOLS 

The eystem of axes used for the presentation of the  data,  together 
with an ind.icat1on of the sense of the positive forces and mrmnts, i s  
presented in   f igure  1. Pertinent symbols are defined as followe: 

CL 

CD 

Cm 

cn . 

CY 

drag coefficient r9) 
pi tching+mmsnt coefficient @$ 
rolling+noment coefficient (&I 
yawing-mment coefficient (&) 
lateral-force  coefficient (5) 

7 
& rolling mment, foot-pounds 

N yawing m m n t ,  foot-gound s 

Y latera'l force, pounds 

M pitching mmsnt about center of gravity a t  26 percent M.A.C. 
c@; 
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c 

9, ,impact  pressure, pounds per  square  foot (qfc) 

P mass density of air, slugs per  cubic  foot 

V free-stream  velocity,  feet per second 

M Mach nuniber 

S wing -ea, square f e e t  

F wing mean aerodynamic chord (M.A.C.) ,  feet 

b wing span, f e e t  

U angle of attack  of  fuselage  center line, degrees 

w angle of yaw, degrees 

€ angle of downwash, degrees 

'e effective  angle of downwash, degrees 

it stabi l izer  sett ing,  measured in  plaae of eynrmetry, degrees 

60 elevator  deflection, measured i n  plane normal t o  tail 
quarter-chord line, degrees 

8r rudder  deflection, measured i n  plane normal to  tail 
quartelcchord line, degrees 

6f wing traiung-edge  flap  deflection,  'degrees 

wing nose flap  deflection,  degrees 

rt t a i l  dihedral angle, degrees 

K r a t i o  of 6um of l i f t s  obtained by equal and opposite changes 
in angle of attack  of  tvo semispans of tail t o  l l f t  
obtained by an equal change in angle of  attack for 
complete t a i l  (See  reference 3 .  ) 

F 
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Subsoripts : 

t tall 

a 

denote partial   derivatives with respect to  a, $, 8,, 8,, 

MODEL AND APPARATLTS 

A three-view drawing of the mdel as tested I s  presented i n  
figure 2; detail6 of the tail panel are presented in figure 3 .  Tbis 
is  the sanm tai 1 panel that wa8 used for  the  horizontal tai 1 in  the 
investigation  reported  in  reference 2. Figure 4 shows the vert ical  
position of  the vee tail and the  three  vertical  positions of the 
horizontal tail ( all the tails had tbe 883116 tail length) . Figure 5 
ehows the assumad effective area of the dorsal trunk upon which the 
vee t a i l  was munted. All f laps  and control  s~wfaces were %percent- 
chord plain flaps except for the nose flaps, wWch were lYpercen+ 
chord p l a i n  f h p 8 .  

The t e s t s  were conducted in the Langley 300 h@E 7- by l0”foot 
tunnel. This tunnel i s  a closed  rectangular tunnel of the return- 
flow type wlth a contraction  ratio of 14  and is powered by a 
16oo”horseparer synchronous motor. 

Tes t  Conditione 

Te~lts of the model i n  both ths cruising and the landing confi@- 
rations were run at a dynamic pressure of 40 pounds per square foot 
corresponding t o  a Mach number of bout 0.16. The t e a t  Reynolds 
number was a p p r o x b t e l y  2.15 x 1 J , based on a chord of 1.846 fee t .  
The degree of turbulence of the tunnel ie not lmown quantitatively 
but is believed t o  be small because of the h€gh sontraction  ratio.  



W A  RM NO. ~ 7 ~ 1 3  5 

P 

Correctiona 

Tares were not  applied  to the data inasmuch as they were  considered 
negligible. Jetboundary corrections were  computed as follows 
(reference 4 ) .  The subscript M refere   to  the measured valuee. 

c 

Although reference 4 deals only with unswept w l w s ,  a n  unpubltshed 
a n a l y s l s  of the corrections  for  reflection-plane mdels mounted 
ver t ica l ly  in 7-.by l G f o o t  cloeed  rectangular  tunaole  indicatea  that, 
f o r  wlngs of the 881116 -8 and s p a ,  sweep anglee up to 600 have l i t t l e  
e f fec t  on the  corrections. 

. The dpmnic  preesurs waa corrected  for blocking 88 follows: 

Q = LO# 

w h e r e  (qc/fc) l e  the dynamfc pressure  uncorrected f o r  blocking. 
(See referense 5 . )  An incremsnt i n  drag coefficient has been added 
t o  account for  the  hor€zontal buoyancy effected by the longitudinal 
static-preesure  gradient in the tunml.  

PreeentAtion of Results 

An outline of the  figures  preeentlng tbe reeulte is given below: 

I. Basic D a t a  nos 
A. Aerodynamic characterist ic8 i n  pitch 6 - 8  
B. Aerodynamic characterlatics i n  yaw 9 
C. Neutral points 10 
D. D k a s h  at t a i l  ll 
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11; Sumnary D a t a  

A -  (C4t 
versus rt 

B . Q and (1 - E versus t a i l  height 
e, 

c. c and c versus rt % %3 

D. (13~~)~ nrsw rt 
E. crib versus rt 

DISCUSSION 

Longltwiinal  Stability  Chsracteristics 

Figure na. 
12 

1 3  

14 

15 

16 

Neutral  points  for ths complete mdel  with the vee tail were 
determined from s t a b i l i z e r  t e s t s  ( f i g .  7 ) ,  and are presented i n  
figure 10. Also preaented are ths neutral  points for the complste 
model with a horizontal t a i l  located a t  three different  heights 
(reference 2 ) .  As would be expected,  since  the vee rm.5 horizontal 
tails hsd identical  panels, ths vee t a i l  contributed Leas longitudinal 
s t ab i l i t y  than the horizontal tail; hmever, ths decrease is  not 80 

great as that lrulicated by ths Isolated tail theory of reference 3. 

Figure 12 shows th3  theoretical  varlatlon ?f the t a l l  contribution 
t o  longitudinal stabi l i ty   with 3ihe4ral angle f o r  three  different 
heights 3f the tail mean wmodynamlc chcml. (See reference 3 . )  Th= 
values a t  I' = Oo were obtain83 from horizontal tail tes t s  st the 
three  different t a i l  heights shown i n  figure &. Also presented art? 
the experlmantal values for the vee tall. By a comparison of ths 
experimental and the theoretical  values, it san be seen thst the vee- 
tail contribution t o  longitudinal  stabil i ty ie approximstely 40  percent 
greater than would be expects5 from the theory. It wlll be shown In 
the  folloidng section that this  Increase is  due to the  favorable 
e f fec t  of eidewash a t  the tsil. 

Downwash st the T a l l  

The curve8 of the average effective downwash angles fo r  :he vee 
tsil m d  conventional tails (reference 2) are presented in figure 11 
for sompwlson. The term "effective" is applied to the clownwash 
b e z m s s  i t  was evaluated from pitching+mnrsnt data which, for  the vee 
tsI1, we6 affected by both the downwash and sidewsah ass9ciated 
uI:.h t,he w i n g  vortsx wake. The effective downwash m y  be dsfinecl as 
thme clownwash angles which, alone, would produce the 8- effect  on 
:ongftudinal s t ab i l i t y  a8 the combined effects  of the actual d o m a s h  
and si. d e w s s h .  
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For  a conventional horizontal tail the sidewash has no effect  on 
th6 effective angle of attack of the tail. For the vee tail, however, 

- the  sidewash w i l l  have an ef fec t  88 i l lust rated by figure 17. 

The l i f t  of a m e  tail is determined by the angle of attack  in 
the  plans normal to the chord plane. However, th i s  angle is  reduced 
not by the normal component of  the downwash angle (as va8 assumed in 
reference 3) but by the normal component  of ths  resultant angle. A s  
is sham  in   f igure  17, the nolcmal component of t h e  resultant angle is 
less  than that of tbs dowarash angle by an BmDunt equal to the normal 
component of the  sidewash  angle. The e f fec t  of sidewash is  to  increase 
the angle of attack of the tail o r  in other words t o  decrease  the 

'effective dovnwash. It w i l l  be noted in   f igure  17 that the induced 
velocities  rather  than the induced angles are shown. For small angles, 
however, the induced angles a m  proportional to  the induced velocities. 
Actually  the t ip   vort icee of both ving panels ahould be considered but 
the one shown, since it i e  the olosest t o  the  point  in  question, will .. 

determine vhether or  not the sidewash w i l l  increase o r  decrease  the . . , . .  

effective dovnwaeh. The other vortex w i l l  tend t o  decrease this 
effect ,   but  the  net   effect  will be a decrease in effective downwash. 

Verification  of the sidewaeh effect  can be obtained by comparing I 

the  rate of change of effective dowrnrash angle w i t h  fuselage angle of 
attack  obtained with the horizontal ta i l8  vi th  that obtained w i t h  the 
m e  tail ( f ig .  ll) . Vduee of these slopes i n  the low l i f t  range are 
presented in   f igure  13 .  The curve ahowing the  effect of tail height on - the  rate of uhange af the  actual downvash Q obtained from the 

ea 
horizontal-tail   teets  ie  presented along with the single value of Q 

'a 
obtained w i t h  the vee tail. The effective tail height of the vee t a i l  
i s  assumed to be equal to ths height of the tail man aerodynamic 
chord. It v i l l  be noted from this figure that the effective  rate of ...:. ;+ - 
change of downwash for  the vee tail is approximately 50 percent less !- ' 

than the actual   ra te  of changg at the sam3 effective tail height. 
This effect  i s  apparently  caused by the favorable  effect of sidewashi : -. . 
a t  the   t a i l .  A method of predicting the sidewash effect  behind a ' 

st raight  wing is  presented in reference 1. However, the sidewash 
ef fec t  behind a sweptback wing appears to be greater than that behind 
a straight wing and the straigh+wing theory underestimates it. A 
p a r t  of this discrepancy €e probably due to  the fac t  that behind a 
swept wing the bound vortex w i l l  also induce a sidewash, but the main 
cause for  the discrepancy is that the  flow f i e ld  about a highly swept 
w i n g  cannot be eatisfactorily  represented by a lifting line. 

The rate of change of effective downwash angle w i t h  fuselage 
angle of attack,  obtained  with  the  extended  vee-tail  panels, is also 
presented. (See f igs .  3 and 4. ) s his slope is  l ess  than that 
obtained v i th  the normal vee tail because of the higher effective 
tail height and the  increase i n  sidewash effect  wfth insreasing  tail 
span. The sidewash effect  inureasee from zero at the p h e  of 
symmetry t o  a maxlmm at e spanwiee station approximately equal to . 

the wing vortex semispan. 
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Also presented in   f igure 13 are values of (I - €ea) which axe 

proportional to the tail contribution  to  longitudinal  stability. It 
w i l l  be noted that, because of the becrease i n  the rate of  change of 
effective downwash, the value of 

'I approximtely 43 percent  greater than that for  the  horizontal tail. 
This fact   indicates that the increase i n  s t a b i l i t y   i e  caused by the 
f8VOrabb ef fec t  of sidewash at the tail. 

(1 - e%) for the m e  t a l l  is 

It w i l l  be noted i n  figure 11 that f o r  the vee tail a t  high 
angles of attack the rate of change of effective downwash with angle 
of attack  increases  rapidly and approaches that obtained with the 
horizontal tail. Thls increme is caueed by changes i n  the re lat ive 
positions of the tail and the vortex eheet. AB the tailmves closer 
to the vortex  sheet,  the  favorable  effect of sidewash decreases. A t  
very high angles of attack a part of the tail may be below the sheet, 
In which case sidewash will have an unfavorable effect on that portion 
of the tall. 

Longitudinal Control Characteriatice 

Values of s tab i l izer  and elevator  effectiveness pararPeter8 f o r  
tail dihedral angles of Oo and 45O are presented i n  figure 14.  The 
values at  45O were obtained f r o m  flgures 6 and 7 while those at 00 
were obtained f r o m  tests of the same tall panel on the s&pr) wing- 
fuselage combination (reference 2) .  Also presented i n  this figure 

the  theoretical variations of effectiveness with tail dihedral 
angle, as predicted by the isolated ta i l  theory of reference 3. The 
close agreezllent  between the theoretical  and experimental =lues of 
the effectivenees  parmeters is  apparent. 

The loss i n  stabilizer  effectiveness  aseociated with deflection 
of the wing flaps is  probably due to  a decrease in the dynamic pressure 
at the t a i l  caused by the f l ap  wake. 

Lateral S t ab i l i t y  Characteristice 

The lateral stabi l i ty   character ie t ice  are presented in figure 9 .  
The negative d i h e d r a l  in  the  tail-off  cruising  configuration 

. -  ( f i g .  g(a)) i s  due t o  the t i p  stall associated with sweptback wings 

. at high angles of attack. (See reference 6 .) 
The tail contribution to directional s t a b i l i t y  

("+t 
obtained 

from f 1gu.m 9 is presented in  figure 15 along w l  th the  theoretical 
variation with tail dlhedrel angle, a8 predicted by ths isolated tail 
theory of reference 3. It w i l l  be noted that there is a very large 
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increase in lateral s t ab i l i t y  over that predicted by theory. Inasmuch 
a s  the tai l  waa not yawed vith the f’uselage held at zero yaw the rate of 
chenge of sidewash  with -le of yaw end the tail effect iveness   in  ysw 
cannot be determined. A part of the  increase i n   s t a b i l i t y  may be due 
t o  b n  increase in  one o r  both of these factors.  The greater portlon of 
the increase is probably due to the  dorsal  trunk (fig. 5 )  w h i c h  increases 
not only  the area of the tail but the  aspect   ra t io  88 w e l l .  Per unit 
area, the dorsal  trunk produces mre yawing moment than the vee tail. 

Rudder Control. Cheracteristics 

The value of the  rudder  control  paramster C f o r  the vee tail 
n% 

as obtained from figure 9 is presented in figure 16, along w i t h  the 
theoretical  vaxiation w i t h  tail dihedral angle as predicted by the  
isolated tall theory of reference 3 .  It will be noted that; the experi- 
mental value of C is approxiIpately 33 percent greater then that 

predicted by theory. A large par t  of thle increase i e  probably due t o  
the ruddez-induced load 3n %he d o r s a l  t& upon which the tail was 
mounted. (See f i g .  5.) 

-r 

C O N C U T S I O E  

Besed on low-speed wind-tunnel t e s t s  of a complete model with e 
sweptback vee t a i l  and a sweptback wing, the following conclusions were 
reached : 

1. For a sweptback vee tail, the variation of stabil izer and 
elevator  effectiveness with ta l1  dihedral  can be predicted 8ati.k- 
fac tor i ly  from isolated Tee-tal1 theory. 

2. The vee-tail  contzibution t o  l owi tud ine l   s t ab i l i t y  is greater 
than that  predicted by isolated  vee-tail theory because of the  favorable 
e f fec t  of sidewash at the tail. However, the sidewesh induced by a 
swept wing is d i f f i c u l t  to estimate because of the limited knowledge 
concernjng  the flow field. behind sweptback KLngs. 

3. For the same contribution t o  s t ab i l i t y  a pee-tail  configuration 
similar t o   t he  one tested w i l l  probably require less area than a,  
conventional tail assenibly (horizontal. and v e r t i c a l   t a i l ) .  

Lsngley Memrial  Aeronautical  Laboratory 
National Ad-ri sory Committee for Aeronautic 8 

Langley Field, Va. 
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F i g u r e  / .- System. o f  a x e s   a n d   c o n t r o l - s u r f a c e   h i n g e   m o m e n t s  
a n d   d e f l e c t i o n s .   P o s i t i v e   v a l u e s   o f   f o r c e s ,   m o m e n t s ,   a n d  
a n g l e e  a r e  i n d i c a t e d  by  arrows. P o s i t i v e  va lues  o f  t a b  
h i n g e   m o m e n t s   a n d   d e f l e c t i o n s  a r e  i n   t h e  same d i r e c t i o n s  
as t h e  p o s i t i v e   v a l u e s  for t h e  c o n t r o l   s u r f a c e s  t o  which  
t he  tabs a r e   a t t a c h e d .  
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